

IN CS, IT CAN BE HARD TO EXPLAIN
THE DIFFERENCE BETWEEN THE EASY
AND THE VIRTUALLY IMPOSSIBLE.

Citations/links for all slides on last slide of this deck.

A few weeks later...

Introducing: Flickr PARK or BIRD

Zion National Park Utah by Les Haines

OR

Secretary Bird by Bill Gracey

tl;dr: Check it out at [parkorbird.flickr.com!](http://parkorbird.flickr.com)

We at Flickr are not ones to back down from a challenge. Especially when that challenge comes in webcomic form. And **especially** when that webcomic is [xkcd](#). So, when we saw [this xkcd comic](#) we thought, “we’ve got to do that”:

Yahoo! did the “research team and five years” in a few weeks, because they’d been working on machine learning.

2011: Google experimenting

2014: Yahoo! marketing it

2017: interns doing it

What changed?

algorithms and GPUs, but also...

We know that significant algorithm improvements in 2006-2007 really contributed to the takeoff, and the continued improvement of relevant GPUs has also helped. But also...

data

Access to a sea of data changed the situation. Instead of training machine learning on dozens of photos, you could train on millions.

(legally protectable?) data

And so this brings us to our talk - if data is enabling an entire new class of software, what role do we as IP attorneys play?

Machine Learning for Open Lawyers

Luis Villa
Law Offices of Luis Villa
luis@lu.is

And so that's where we come in: why does data matter? what are they doing with it? and why does it impact us as open lawyers?

1. what ML *isn't*
2. what it is
3. what that means for lawyers
4. what that means for *open law*

First, a quick summary of the talk.

1.

***what isn't machine
learning***

not
“general-purpose”

No one is building general-purpose AIs! machine-learning will not teach itself to drive, or to throw us out the airlock.

not
“general-purpose”

It also isn't infinitely learning.

*“They're quite specialized ...
they do [one] thing
incredibly well”*

to put it another way...

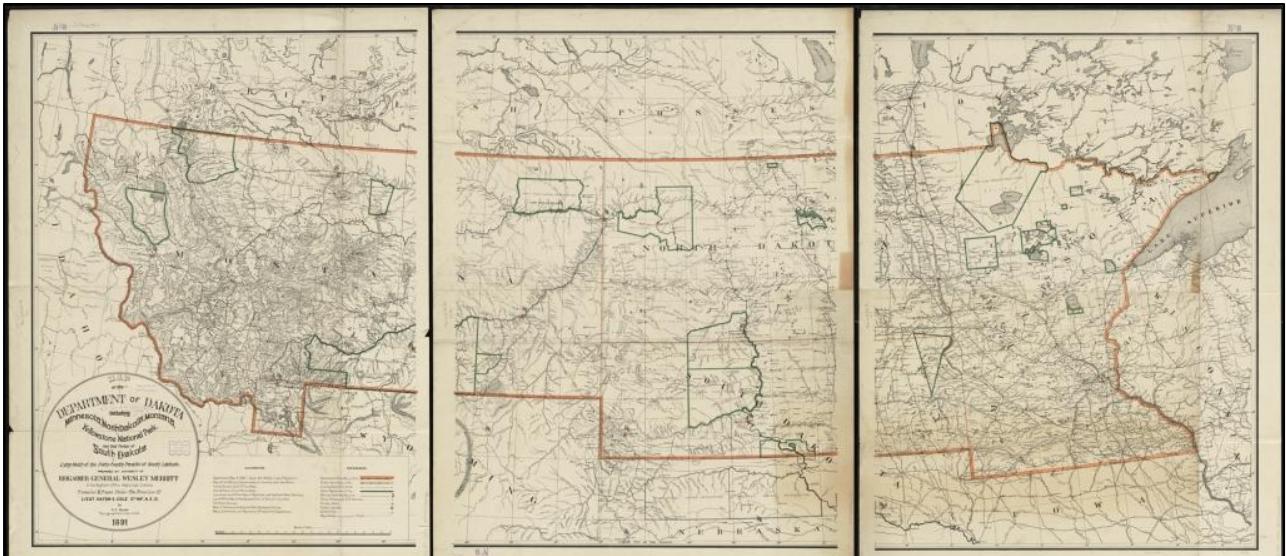
not traditional programming

IN CS, IT CAN BE HARD TO EXPLAIN
THE DIFFERENCE BETWEEN THE EASY
AND THE VIRTUALLY IMPOSSIBLE.

Finding whether something is in a park is easy because we have maps of parks that we can break down to latitude and longitude coordinates, and we can then easily compare with the internal data.

“find this on a map”:

discrete steps,
easily explained



if x & y

You literally just compare x, then compare y, and you know if this is in the park. You can explain this to a child (and a computer is basically a child).

“bird”:
hard to explain,
no discrete steps

Explaining a “bird” to a computer is like explaining to a particularly dense child: instead of “why, why, why”, it is “what, what, what”. That gets very hard to do, especially in a general way - hence the XKCD joke.

2.

*What is machine
learning?*

recognize
a pattern in data

&

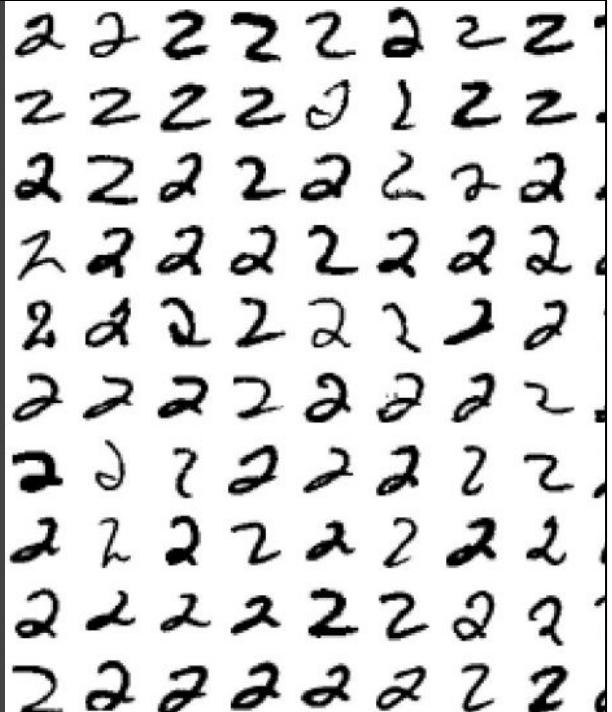
improve recognition
by exposure to more data

This is one definition, adapted from the book “An AI Pattern Language”. (cite/link on last slide of deck)

(o)
gather lots of data

examples:

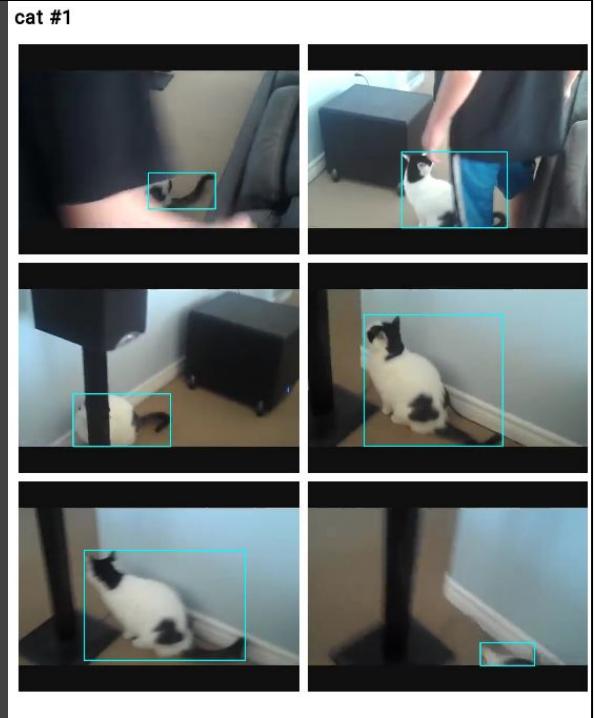
- *MNIST*: 70k #s
- *8m*: 7m videos
- “*heterogeneous activity*”: 43m phone records



These are all public data sets. Private data sets can run to the billions or even trillions of records.

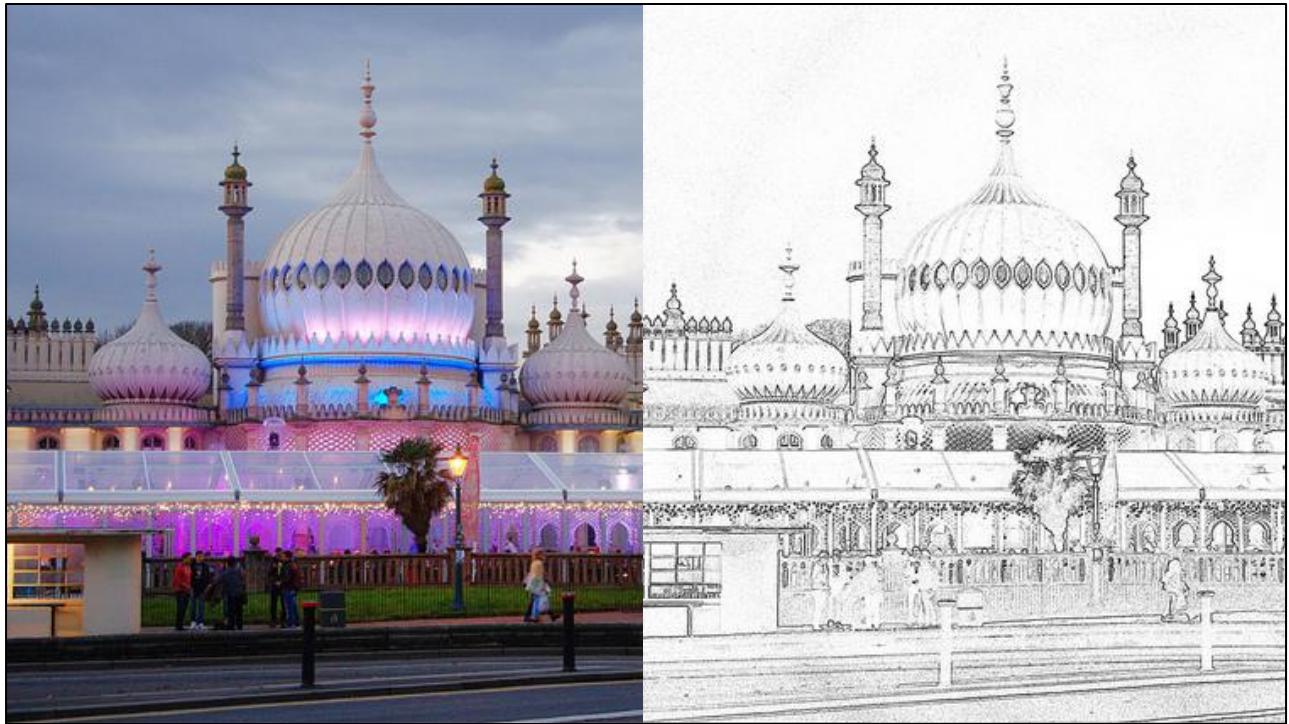
Attorneys in the room, which is to say most of us, should be getting nervous now - lots of protected material is being gathered and copied in preparation.

YouTube
“bounding box” set:
• carefully selected
• human-annotated



Gathering data can include sampling (selection!), handling gaps/missing data (modification!), collective works (who has the rights on that?)

(1)
extract “features”



Generally, though not always, machine learning is not fed raw data - instead, interesting “features” relevant to the question being asked are extracted using more traditional computing techniques. In this example, since we want to know about the building’s structure, rather than its colors, we might use a simple technique to highlight the edges before feeding it to the machine learning technique.

The YouTube 8m dataset that I mentioned earlier has 3.2 *billion* features extracted from 7 million videos. Other examples of “features” that might be extracted can be human labeling, the bounding boxes I showed earlier - all *modifications* of the original data set in some way.

(2)
define outcomes

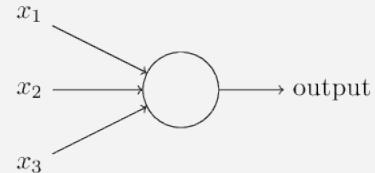
2!

Since the algorithm has to know if it has failed or succeeded, we need to identify success/failure criteria, often by labeling the existing data. Here, for example, we tell the computer that all these handwritten numbers (from the MNIST data set) are the numeral 2.

Note that this can, again, be a step where data is created by humans. This approach is called “supervised” learning (because, like a kindergarten teacher, the learning algorithm is “supervised”). This is the dominant approach, though there are other techniques (not discussed in this talk) called “unsupervised” learning, where no pre-labeled outcomes are necessary.

(3)
build structure

neurons



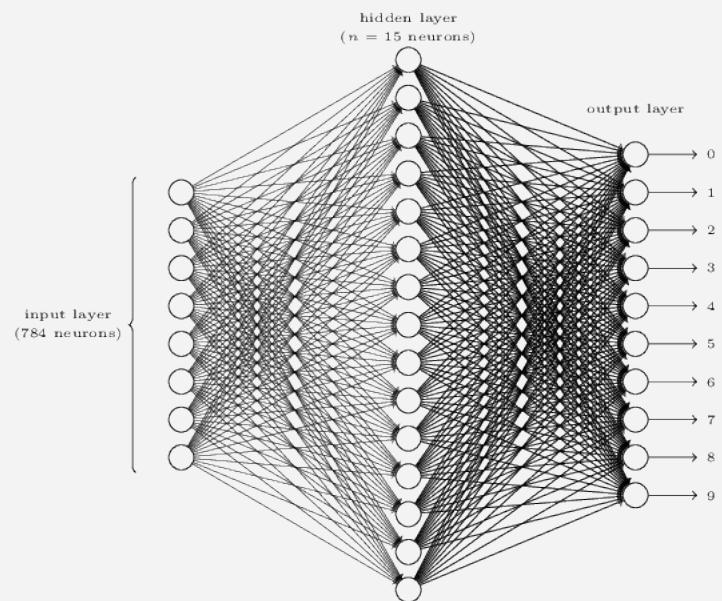
You may have heard of neural networks; they're called that because they're composed of "neurons" - basically a very, very simple mathematical function that takes in inputs and outputs a simple value.

The math of any individual neuron is pretty simple: here if $x_1*x_2*x_3$ some threshold, then output one, else output zero. (In practice neurons usually use a wave function, not zero or one, but we'll simplify here for this discussion.)

Each neuron has a "weight" - the threshold that (here) $x_1*x_2*x_3$ must pass. This "weight" is the value that is learned.

Note, though, that in practice even simple neurons will have hundreds, thousands, or millions of inputs, depending on the complexity of the inputs.

composed into neural *networks*



We connect these individual simple neurons into more complex networks. Choosing how to do these connections (including how many neurons in each “layer”) is very much an art, and requires a combination of experience, judgment, and experimentation to see what is most effective for any given problem. Again, each node of the network has a weight - ultimately, a number in an array.

In this example, which is a simple solution to evaluate handwritten numerals from the MNIST set, we put in 784 neurons (28x28 grid of pixels) and get out a probability (0-1 range) for each of 0-9.

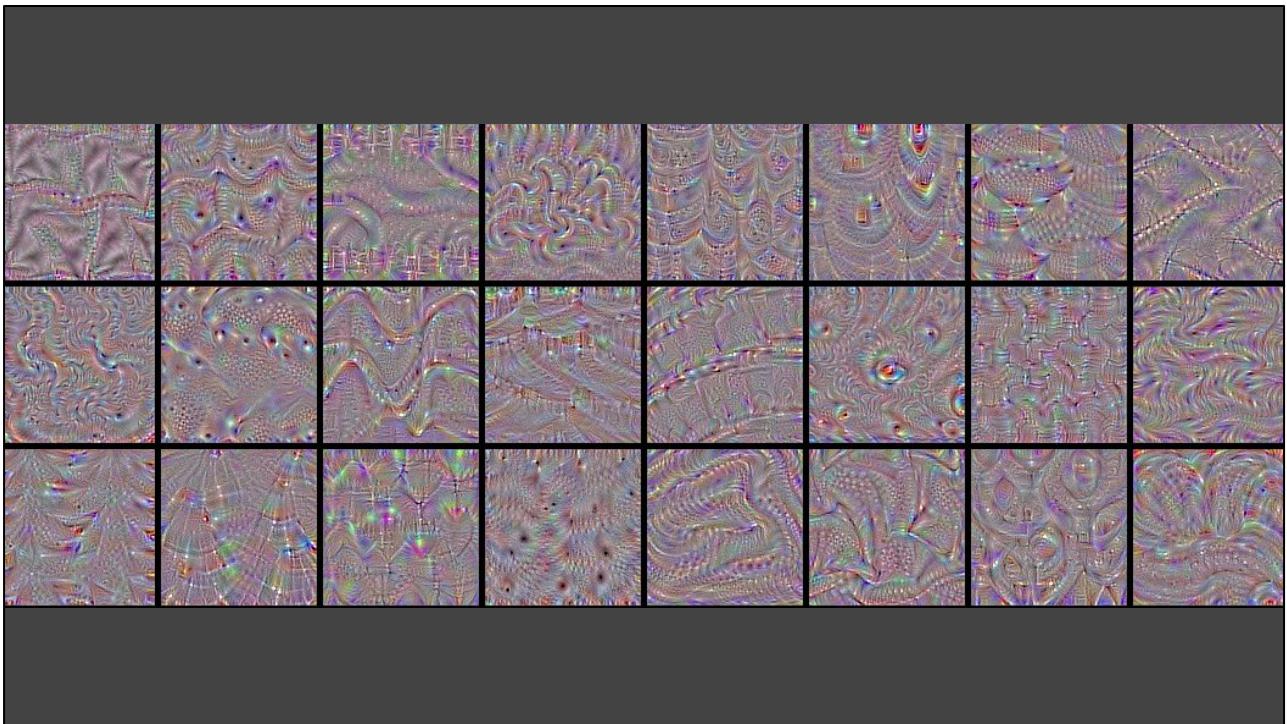
(4)
compute weights

This is where the learning comes in - a combination of random numbers and sophisticated math. The idea is that we randomly generate weights for each neuron, test the inputs/outputs, and then tweak the weights until the output is correct.

I won't go into this in much detail, because it isn't legally relevant at this point. Suffice to say that what's being handled is entirely numbers - not text strings, images, etc.

(5)

result: *very big* array of weights



Once you've done some learning, you end up with a "model" - essentially a big, multidimensional array, containing a lot of numbers.

It is important to note that these arrays are in practice so big (784 dimensions for the simple handwriting example I just mentioned) that humans have a hard time visualizing them in any meaningful way. There is an entire sub-field dedicated to extracting meaning from these arrays; these images are one attempt to help people comprehend these arrays.

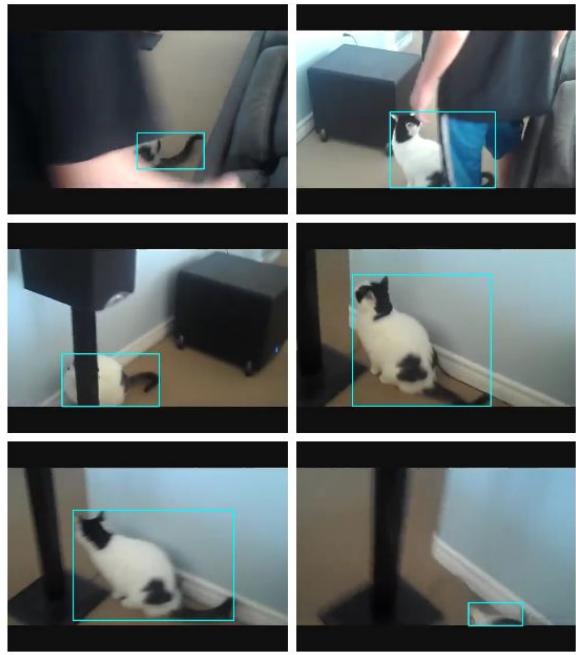
Ponder: if the output is literally not comprehensible by humans, is it protectable?

3.

What does this mean for lawyers?

So some comments, then, on what this means for lawyers!

cat #1



protected works
are used

Some things to consider:

- works protected under traditional IP laws are often the source of training data
- Here, we have an example from YouTube, which has been enhanced by human editing (addition of the “bounding boxes” surrounding the cat)
- What rights might exist in these training sets? There has been selection, modification, possibly collaborative works.

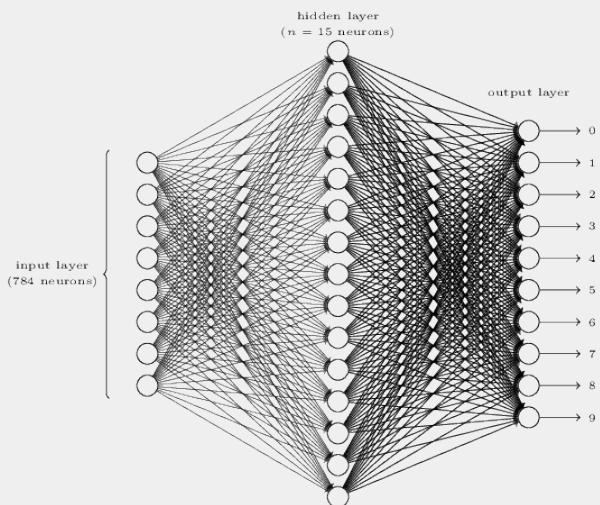
US *copyright* law likely says fair use

James Grimmelman's "Copyright for Literate Robots" tells us that all reading by computers, in the US, is likely to be fair use. But this could change, of course, and is hard to rely on.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2606731

EU database directive... ???

As EU lawyers know, EU database cases are scarce and lag substantially behind the technological cutting edge. Can I give you advice on a specific set of facts? Yes. But I think it would be hubris to write a license with any pretense of understanding how EU case law would come out on this issue.



protectable works
are (arguably)
created

- Some creativity and choice here, though mostly machine generated - may be more a matter for the patent attorneys.
- Are these databases in the EU sense?

outputted works are ???

This is https://en.wikipedia.org/wiki/Edith_Grossman; she's an expert translator and her works are inarguably protected. But translation through machine learning may look much more like the monkey selfie, from a US copyright perspective.

other facets:
discrimination?

Translate

Turn off instant translation

German Italian English Detect language

English Italian Spanish

Translate

a lawyer a nurse

16/5000

un abogado una enfermera

Suggest an edit

notice anything about the gender?

The machine learning has picked up our underlying biases - lawyers are assumed to be male, nurses female, even though the Spanish language can handle either.

other facets:

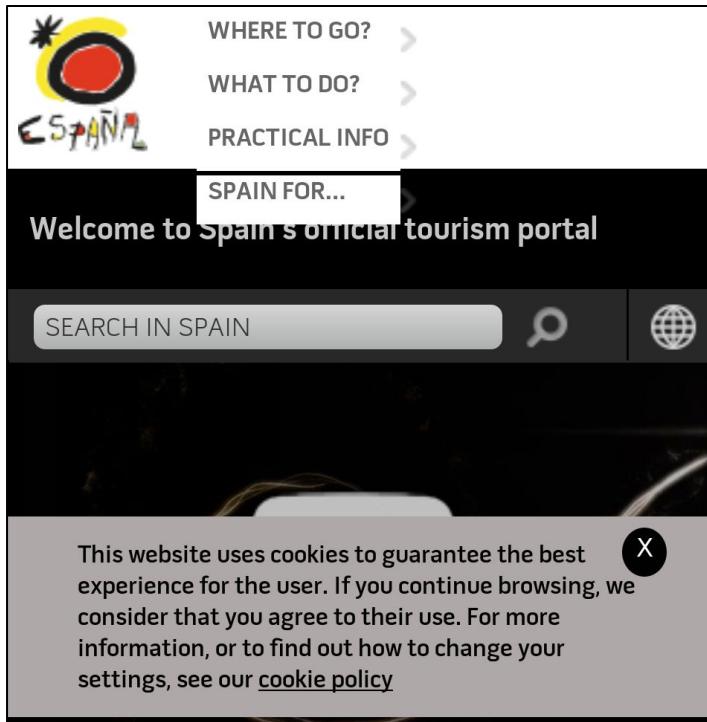
privacy?

Note, of course, that this significantly incentivizes massive data collection; may have unanticipated outcomes.

other facets:

“right to explanation” (EU) /
“due process” (US)

In the EU, a “right to explanation” has been mooted, and in the US, where machine learning algorithms can be used for things like suggesting jail terms, due process issues may also come into play. Remember, of course, that we literally can’t understand at a deep level what these algorithms do! How that technical fact will clash with legal requirements is unclear.



cookie
notices, but
for machine
learning?

We may end up with polite, but stupid, legal fictions, where everyone pretends to know/care what is going on, but no consumers are actually helped.

4.

What about *open* lawyers?

open data already happening

Wikipedia + Flickr data sets are very critical; machine learning also going on OSM.

open data possibly preferred?

Note Amanda Levendowski's work on "low friction" data, where engineering preferences for open data may lead to bias in ML outcomes; may also be that US data is preferred because of fair use and privacy arguments in the US, which would be to the detriment of non-Americans.

<http://www.werobot2017.com/wp-content/uploads/2017/03/Levendowski-How-Copyright-Law-Creates-Biased-Artificial-Intelligence-Abstract-and-Introduction-1.pdf>

open models!

Open source code powering all this is already very common, with simple open source licenses (e.g., Apache) already applied. Not clear if/how that makes sense at all.

Parsey McParseface and more:

[github.com/
tensorflow/models](https://github.com/tensorflow/models)

File	Commit Message	Age
dragger	Update the DRAGNN (r118)	a month ago
dragger	Fix DRAGNN avoid duplicating TF symbols	29 days ago
experiments/dragger	Update the DRAGNN (r118)	a month ago
g3doc	Fix broken url link	12 days ago
symbolic	Update DRAGNN, fix some macro issues	27 days ago
tensorflow/tensorflow	Update DRAGNN, fix some macro issues	27 days ago
third_party	Adding DRAGNN to tensorflow/models (90)	11 months ago
tools	Release DRAGNN (r117)	a month ago
util/tf	New transition systems and features for npytable (r001)	9 months ago
doctools	Release DRAGNN (r117)	a month ago
g3phrases	Adding SyntaxNet to tensorflow/models (90)	11 months ago
Dataset	Update docstring to allow notebook to run (r100)	12 days ago
README.md	Update README.md	14 days ago
WORKSPACE	Release DRAGNN (r117)	a month ago
README.md	Release DRAGNN (r117)	a month ago

SyntaxNet: Neural Models of Syntax.
A TensorFlow toolkit for deep learning powered natural language understanding (NLU).
CoNLL. See here for instructions for using the SyntaxNet/DRAGNN baseline for the CoNLL2017 Shared Task.
At Google, we spent a lot of time thinking about how computer systems can read and understand human language in order to treat it in intelligent ways. We are excited to share the fruits of our research with the broader community by releasing SyntaxNet, an open-source neural network framework for TensorFlow that provides a foundation for Natural Language Understanding (NLU) systems. SyntaxNet is a deep learning model that can be used to train new SyntaxNet models on your own data, as well as a suite of models that we have trained for you, and that you can use to analyze text in even more languages.
This repository is largely divided into two sub-packages:

- 1. DRAGNN: code, documentation, paper implements Dynamic Recurrent Acyclic Graphical Neural Networks (DRAGNN), a framework for building multi-task, fully dynamically constructed computation graphs. Practically, we use DRAGNN to extend our prior work from Andor et al. (2015) with end-to-end deep recurrent models and to provide a much more general and flexible framework for building complex, dynamic, and distributed neural networks as a Python library, and therefore much easier to use than the original SyntaxNet implementation.
- 2. SyntaxNet: code, documentation is a transition-based framework for natural language processing, with core functionality for feature extraction, representing annotated data, and evaluation. As of the DRAGNN release, it is recommended to train and deploy SyntaxNet models using the DRAGNN framework.

How to use this library
There are three ways to use SyntaxNet:

- See here for instructions for using the SyntaxNet/DRAGNN baseline for the CoNLL2017 Shared Task, and running the ParseyMcParseface models.
- You can use DRAGNN to train your NLP models for other tasks and dataset. See "Getting started with DRAGNN" below.
- You can continue to use the Parsey McParseface family of pre-trained SyntaxNet models. See "Pre-trained NLP models" below.

Installation

Docker installation
The simplest way to get started with DRAGNN is by loading our Docker container. Here is a tutorial for running the DRAGNN container on GCP (just as applicable to your own computer).

Open source code powering all this is already very common, with simple open source licenses (e.g., Apache) already applied. Not clear if/how that makes sense at all.

cross-cutting issues are hard to deal with

If we thought patents and export restrictions, and their interaction with copyright, was bad, this situation will be vastly worse.

privacy
much worse than
patents

all changing *very* fast — can our regimes keep up?

This is all evolving incredibly quickly - key mathematical techniques didn't exist before 2006; data sets not previously widely available. I think there is a high probability that we will end up with new *sui generis* laws like we did for databases, which will make our existing licenses possibly obsolete. It is our responsibility to figure out how to build data and code licenses that actually can adapt - not sure we're ready for that!

Thank you!

slides (including license attributions)
will be at lu.is/talks/

Luis Villa — luis@lu.is

Licenses and links

Luis Villa's copyrights in this material are made available under CC BY 4.0. However, note that images may be under non-commercial licenses, or used under fair use, so use of the slide deck in a commercial or non-educational setting may not be permitted without removal of those images.

- “Tasks”, by Randall Munroe. xkcd.com/1425, CC BY-NC 2.5
- Introducing: Flickr PARK or BIRD; fair use for educational purposes
- “Hal 9000” by *Carlos Pacheco* is licensed under CC BY 2.0
- Baby by Luis Villa, licensed CC BY 4.0
- Specialization and recognition quotes from “An AI Pattern Language”, by M.C. Elish and Tim Hwang
- “Map of the Department of Dakota including Minnesota, North Dakota, Montana, Yellowstone National Park, and that portion of South Dakota lying north of the forty-fourth parallel of north latitude” by *Norman B. Leventhal Map Center* is licensed under CC BY 2.0
- MNIST handwritten numbers under no known license; fair use for educational purposes
- Screenshot of cats from [YouTube-BB “explore”](https://www.youtube.com/watch?v=9eLWVJzDzDw) by Google, Inc., licensed under CC BY 4.0
- “Edge Detect” Filter - Brighton Royal Pavilion and Ice Rink - “Edge Detection Effect” by *Dominic Alves* is licensed under CC BY 2.0
- Neuron and neural network image from [Neural Networks and Deep Learning](http://neuralnetworksanddeeplearning.com/), by Michael Nielsen, under CC BY-NC 3.0
- “Dice” by *Brent Newhall* is licensed under CC BY 2.0
- Image of neural network activations from [Keras Blog](http://keras.io/); fair use for educational purposes
- Edith Grossman, by [Kelly Writer’s House](http://kellywriterhouse.com/), under CC BY 2.0
- Screenshot of Google Translate unprotectable in the US; inspired by research from [Gendered Innovations at Stanford](http://genderedinnovations.stanford.edu/)
- Screenshot of spain.info; fair use for educational purposes